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This paper investigates the production ofNannochloropsis sp. algae atfive different sites located in the southwest-
ern region of the United States. Studies of the economic viability of algae production typically calculate the Capital
and Operating Expenses of stylized algal production firms with minimal understanding of the linkages between
production and input variables that drive the costs being estimated. These resultswork towards filling this gap by
estimating several production functions using real world data. Our dataset includes 10,316 days of algae growth,
from which we generate 495 growth period observations. Particularly, the study analyzes the relationship be-
tween variation in input factors over a growth period and the resulting algae production measured by ash free
dry weight. We carry out several multivariate econometric regression analyses. The variables photosynthetically
active radiation (PAR), length of growth periods, and the growth of Nannochloropsis salina result in increased
algae production. Algae production at the Texas AgriLife at Texas A&M University in Pecos, Texas, and Flour
Bluff, Texas, resulted in higher algae production than the three sites in New Mexico. Increases in the initial
algae inoculation levels and average precipitation consistently indicated a negative relationship with algae pro-
duction in our model. These results should be useful for further studies aiming to connect real world algae pro-
duction decisions with measures of costs and profitability.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Microalgae suitability for bioenergy

Considerable interest has been expressed in policy circles regarding
the potential of microalgae biofuels as an alternative source of clean en-
ergy [1]. Microalgae are diverse unicellular microorganisms that can
convert sunlight and CO2 into carbohydrates, protein, and natural oils,
using photosynthesis [2]. As much as 75% of body weight in some spe-
cies is made up of natural oils [1,3,4]. These oils can be processed into
numerous products through transesterification [5], hydrothermal lique-
faction [6,7], or gasification [8]. Microalgae lipids have been upgraded to
jet fuel, diesel fuel, gasoline, green diesel, or biodiesel through many of
the same processes used to convert petroleum crude into finished fuel
products [9,10]. These products have the advantage, in contrast to eth-
anol, of being energy dense fuels that are compatible with existing
lt), cdownes@nmsu.edu
oorhies), chrerick@nmsu.edu
energy infrastructure [11]. Algal based biofuels have the potential to
be produced with a smaller carbon footprint than traditional fuels and
can be produced with water, land, and nutrient inputs that do not com-
pete with food production, unlike other feedstocks, such as corn, sor-
ghum, and sugarcane [12]. Algae also have a much faster rate of growth
and smaller land footprint due to the increased photosynthetic efficiency
relative to land crops [13].

The first generation of biofuel production focused on Nannochloropsis
salina, which are a coldwatermarine species [14,15] shown to be tolerant
of brackish water [16] and suitable for CO2 fixation [16]. Nannochloropsis
are also high in triglycerides and have a relatively high growth rate.
Thus, this species was thought to be a good candidate for use as a biofuel
species. While continued research has found additional species that are
more viable for production scale, much has been learned from the initial
cultivation experience with Nannochloropsis [11]. It has been used as the
base organism inmany of the Life Cycle Assessments and first generation
techno-economic models, and many of the growth and nutrient predic-
tions for greenhouse gas and land use change calculations have been
done using Nannochloropsis [2,13,17–21]. Many algae cultivation studies
have used techno-economic assessment (TEA) to analyze the potential
economic viability of algae production and to calculate the Capital and
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1 The NMS site was 38 km from the PAR sensor, located at the Jornada long-term agri-
cultural research site near Las Cruces, NewMexico. This sensor also provided data for SAP
(43 km distance) and CHM (221 km distance). The PAR sensor in Seguin, Texas, provided
the COR PAR data (227 km distance). The PEC PAR observations were taken from the PAR
sensor in Big Bend, Texas (253 km distance).
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Operating Expenses (CAPEX and OPEX) of stylized algal production firms
[11,22–28], withminimal understanding of the linkages between produc-
tion and input variables that drive the costs being estimated. This research
works towards bridging this gap with an applied algae production analy-
sis that estimates the relationships between a selection of critical environ-
mental and control variables and the impact on biomass production using
10,316 days of outdoorNannochloropsis production data from five sites in
the southwestern United States. Using econometric analysis, production
functions are estimated, allowing for the examination of the role of vari-
ous environmental and control inputs in the production of algae. Both
Cobb–Douglas and translog functional forms of production are estimated.
The research provides a systematic analysis of the relationship between
biomass productivity and the explanatory variables of temperature,
PAR, production cycle length, and initial inoculation, using real world
data. The methodology can identify inputs that are over- and under-
utilized. The results allow simulation of the impact from changes to the
quantity of algae production input variables, and provide a comprehen-
sive analysis of microalgae production data. The results should be useful
for the development of additional models concerned with financial and
environmental viability of algal fuel production.

1.2. Production and economic efficiency

Understanding the relationship between inputs and outputs is a criti-
cal step in accurately determining economic feasibility, and more impor-
tantly, can be used to direct research and development toward reducing
costs and increasing output in order to increase economic viability of
the use of algae as a biofuel [29]. Any givenproduction process can be rep-
resented by a production function:

Y ¼ f Xð Þ: ð1Þ

Eq. (1) gives the combination of inputs (X) and outputs (Y) that are
technologically feasible at a specified point in time, and allows the flow
of inputs and outputs for a given time period to be tracked through a
production system or process (see, e.g., [30–32]). An applied production
analysis focuses on defining the elements and relationships in Y= f (X)
such that profit can be estimated and sensitivity analyses for the various
production inputs can be investigated [33, pp. 54–75].

To further understand Y= f (X), it is useful to divide this input vector
into three categories. First are elements of X that are under the opera-
tional control of management and can be varied in the short-run. The
second category includes capital inputs that are under the control of
management, but can only be varied in the long run, between growing
cycles or when longer-term management strategies are being consid-
ered. Third are environmental factors that are important for the produc-
tion process but are not under the direct control of management. These
environmental variables are stochastic in nature. While management
does not directly control these environmental variables, many of the
Capital and Operating Expenses incurred will be related to mitigating
the adverse impact of these environmental stochastic variables on pro-
duction. Thus, stochastic non-control variables enter into the choice set
of the firm through decisions regarding the use of capital and operating
systems and processes. Thus, the production function can be represent-
ed as follows:

Y ¼ f ο; κ; εð Þ ð2Þ

where ο is a vector of inputs under operational control that can be var-
ied in the short run, κ is a vector of capital inputs that are fixed in the
short run, and ε contains stochastic environmental variables not under
the direct control of management. Eq. (2) captures the basic elements
of algae lipid production, which can be used to derive the revenues,
costs, and profit or loss of the firm. More directly, the stylized produc-
tion function captures the production based variables and their
interdependencies.
The conceptual framework defined by Eq. (2) needs to be trans-
lated into a functional analysis. Typically TEAs do this by using math-
ematical equations to populate a spreadsheet with the economic and
financial metrics of interest. Parameters for these equations are typ-
ically derived using lab bench experiments or other prototypes. Often,
idealized operation is assumed. An alternative procedure, which is pur-
sued in this paper, is to estimate a production function from actual data
generated from experiments. In particular, a production function for
Nannochloropsis sp. is estimated using a panel data set created by pooling
data from five experimental production facilities [34].

2. Material and methods

2.1. Description of data

The authors use 10,316 days of algae growth from five sites located in
the southwestern United States collected from 2009–2012. From this
sample, 495 growth period observations were generated. Data was col-
lected from the following sites and partners: (1) Sapphire Energy in Las
Cruces, NM(SAP); (2) NewMexico StateUniversity Energy Research Lab-
oratory, in Las Cruces, NM (NMS); (3) Center for Excellence in Hazardous
Materials Management in Atoka, NM (CHM); (4) Texas A&M AgriLife Ex-
tension in Pecos, Texas (PEC); and (5) Texas A&M AgriLife Extension in
Flour Bluff, Texas, near Corpus Christi, Texas (COR). The cultivation data
was collected over a four year period in outdoor reactors similar to tradi-
tional Oswald raceways. Cultivation volumewas from 1000 l to 100,000 l
and more than 50% of the observations are drawn from cultivation vol-
umes in excess of 25,000 l.

Table 1 provides descriptive statistics for the variables included in our
study. AFDW is a uniformmeasure of organic content that eliminates the
variability that may arise from samples with differing water content or
ash content [35]. In many instances, including the measuring of initial
values that were non-zero, AFDW was extrapolated from a recorded
value of AFDW density (g/l). For other cases, optical density at 750 nm
(OD750) was used to determine AFDW [35]. For the latter case, an ob-
served relationship between OD750 and AFDW was determined via an
ordinary least squares regression analysis for each site. From this analysis,
the AFDW values are determined.

The growth periods were a number of days of growth, which began
with an initial measurement of AFDW, and ended with a final measure-
ment of AFDW. The final measurement of AFDW was recorded from a
measurement of harvested biomass, a final reading of AFDW density in
the pond, or from a combination of the two. In some growth periods,
for example with the PEC site, biomass was not harvested, yet the batch
was moved to a different pond, diluted, and a new growth period
began. In the case of CHM, and in some of the SAP growth periods, bio-
mass was partially harvested, then growth was allowed to continue. The
day of harvesting, or the last day of consecutive days of harvesting if har-
vest occurs overmultiple days, is considered the final day of a growth pe-
riod. For each growth period inwhich biomasswas harvested throughout
the growth period, the harvested quantity was added to the final growth
quantity. The following equation summarizes the AFDW calculation:

AFDW ¼ ending biomass‐initial biomassþ harvested biomass: ð3Þ

The average daily-integrated photosynthetically active radiation
(PAR) over the growth period is taken from data collected in three-
minute intervals by Colorado State University (CSU) [36]. Several sites
did collect PAR onsite, but the CSU data set provides a uniformmethodol-
ogy to collect PAR. The CSU PAR sensors closest to the production site
were used [27,37,38].1 The use of CSU PAR sites introduces measurement
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Table 1
Descriptive statistics.

Variable Units Description Obs Mean SD Min Max CV

AFDW g/m2 Ash free dry weight generated over growth period per area 495 77.6 67.2 −61.0a 353.6 0.866
PAR μmol/(m2 s) Average daily integrated PAR over the growth period (in thousands) 495 36,277.1 12,033.1 14,919.9 60,129.6 0.332
INI g/l Initial ash free dry weight density for growth period 495 0.31 0.24 0.02 1.00 0.778
DAY # Number of days in the growth period 495 20.8 20.4 3.0 146.0 0.980
TEM F Average range of daily ambient air temperature fluctuation over the growth period 495 21.7 8.7 7.3 41.0 0.400
PRE in/d Average precipitation per day over the growth period 495 0.02 0.04 0.00 0.56 2.618
NAN Dummy Dummy variable indicating algae species as Nannochloropsis salina 495 0.72 0.45 0 1 0.622
SAP Dummy Dummy variable indicating growth at Sapphire Energy in Las Cruces, New Mexico 495 0.09 0.28 0 1 3.245
PEC Dummy Dummy variable indicating growth at Texas AgriLife at Texas A&M University in Pecos, Texas. 495 0.17 0.37 0 1 2.230
COR Dummy Dummy variable indicating growth at Texas AgriLife at Texas A&M University in Flour

Bluff, Texas, near Corpus Christi, Texas.
495 0.48 0.50 0 1 1.040

CHM Dummy Dummy variable indicating growth at the Center for Excellence in Hazardous Materials
Management in Atoka, NM.

495 0.12 0.33 0 1 2.670

NMS Dummy Dummy variable indicating growth at New Mexico State University Energy Research
Laboratory, in Las Cruces, NM.

495 0.14 0.35 0 1 2.467

a Growth was negative for some observations, arising from pond crashes in which a significant portion of the algae died prior to harvest.
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error, but researchers felt that PAR is a critical variable and that this proxy
measure was preferable to excluding PAR as a production variable. At the
beginning of each growth period, the initial density of algae (INI) is mea-
sured as AFDW (g/l). A nonlinear relationship between INI and AFDW
was hypothesized. A zero value of INI would result in no growth, as
there would be no parent algae. On the other hand, a high value of INI
would result in excessive competition for nutrients as well as self-
shading. Growth periods varied in length over time at individual sites,
and also across different sites. The number of days in each growth period
(DAY)was included to control for growth period variation. It was expect-
ed that very short growth periods, and very long growth periods, would
result in lower overall per day productivity, providing a non-linear rela-
tionship between productivity and DAY.2 The average range in daily am-
bient air temperature over the growth period by site (TEM) is a proxy for
water temperature fluctuation. Ideally, direct measures of water temper-
ature would be used [38], but this data was not measured consistently at
each of the sites. Air temperature is an acceptable proxy, as no site in the
study mechanically controlled water temperature. Average participation
per day during the growth period (PRE) is included to account for storm
events, which are associated with the invasive species events.

A number of dummy variables are included in the analysis. First
among these is NAN, which is a dummy variable indicating that the spe-
cies is N. salina. All of the observations that were not N. salinawere from
the genus Nannochloropsis, but included various strains other than
N. salina such as Nannochloropsis oculata. In some instances, the strain
was not identified. Dummy variables for location were also included in
the analysis.3 Location dummies are expected to have a significant effect
on production stemming from geographical location, from physical de-
sign of ponds and raceways [39], and from systematic differences in pro-
duction techniques across sites.

Daily productivity at each site is provided in Fig. 1, measured as ash
free dry weight (AFDW) per day (g/m2/d), by site and overall. The PEC
site had the highest average productivity, but also the most variation.
CHM was least productive while NMS had the least variation in output.
Daily AFDWvaries from an average of 0.803 g/m2/d in CHM to an average
of 8.513 g/m2/d in relatively nearby PEC.4
2 Seven observationswith fewer than two days in the growthperiodwere eliminated as
being two short a time period to be considered full growth cycles. Two additional observa-
tions of 595 and 600 days were eliminated because they were considered unrealistic
growth scenarios.

3 The dummy variable takes on the value 1when the data is from the indicated location,
and is zero otherwise.

4 The growth period data at the CHM site was not clearly delineated, as the growth was
carried out in ongoing pond growth periods spanning multiple years. See discussion
below.
2.2. Data relationships

Fig. 2 displays scatter diagrams plotting the natural log of algae pro-
duction as measured by average ash free dry weight generated over the
growthperiod (lnAFDW) to the natural log of the various potential deter-
minates, with different determinants displayed in each of the panels. Also
included in each panel is a fitted value determined using ordinary least
squares. Logarithms were used to account for potential nonlinearity in
the data. One difficulty with this approach is that some observations for
growth were negative, arising from pond crashes in which a significant
portion of the algae died prior to harvest. Values less than or equal to
zero cannot be transformed into natural log form. A common solution is
to add a factor to all observations of a variable that sufficiently brings
all values above zero. Doing so does not change the relationship between
the dependent and independent variables. [40]. Following this approach,
61 was added to each AFDW observation. Similarly a one was added to
the independent variables INI and PRE, to eliminate values less than
zero, and negative log values. Panel A in Fig. 2 relates ln AFDW to the nat-
ural log of average PAR over the growth period (ln PAR). A positive rela-
tionship is expected [41]. In fact, a weak negative relationship is
observed. Panel B shows that algae production increases with days
over which growth occurs (ln DAY). It is expected that over longer
grow periods, production will remain positive, but the growth rate will
begin to decline due to self-shading [42]. Panel C shows the relationship
between ln AFDW and the natural log of initial density (ln INI). A nega-
tive relationship is observed indicating over inoculation may be
−
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Fig. 1. Box plot of daily algae production by site, and overall production for all sites.



5 The data is pooled in the sense that data from all five sites are used to estimate the re-
gressions. The data is unbalanced in the sense that there are a different number of obser-
vations for different sites and the observations may not correspond to each other in time.
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Fig. 2. Log–log relationship between algae production and the determinants of algae production. Panel A illustrates a positive relationship between ln AFDWand ln PAR. Panel B illustrates
a positive relationship between lnAFDWand lnDAY. Panel C illustrates a negative relationship between lnAFDWand ln INI. Panel D illustrates a negative relationship between ln TEMand
ln AFDW. Panel E illustrates a negative relationship between ln PRE and ln AFDW.
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occurring [42]. Panel D shows the relationship of the natural log of the
mean daily range in ambient air temperature (ln TEM) to be negatively
related to algae production [41,42]. A constant, controlled temperature
appears to promote growth. In Panel E, it is apparent that the natural
log rainfall during the growth period (ln PRE) is associated with declin-
ing algae production. This is likely due to storms causing pond crashes
as wind and rain can contaminate open ponds.

3. Econometric modeling

The two-way correlation in Fig. 2 provides an indication of the rela-
tionship between algae growth and production factors. However, multi-
variable regression analysis permits examining the role of the various
factors simultaneously in influencing production. In this section, econo-
metric methodology is laid out in full.

The production function forNannochloropsis sp. can be represented by
Yit= f(Xit1,Xit2,…XitM; ηi,υit), where i=1, 2,…, 5 is an index of locations, t
is a time index, Yit is output at time t for location i, Xitm are factors that af-
fect the algae production also indexed for time and location, ηi is an unob-
servable site-specific effect, and vit is a random component. In what
follows, f(∙) is assumed to be approximated as log-linear. The natural log-
arithm of Yit, and Xitm are denoted by qit and xitm, respectively. The specific
formof theproduction equation canbe approximated as a log-linear func-
tion defined as follows.

yit ¼ α0 þ
XM

m¼1
αmxitm þ ηi þ υit ð4Þ

This is the Cobb–Douglas production function, which is frequently
used in economics, as it illustrates with ease the trade-off between
input variables in order to achieve production output. It has been
shown to appropriately estimate a wide variety of production relation-
ships [30,33,34]. The term αm is the production elasticity for the input
xitm and M is the number of inputs. Thus, given our specification, a 1%
increase in xitm causes anαm percent increase in yit. Eq. (4) is estimat-
ed using an unbalanced pooled data5 with three different techniques—
ordinary least squares (OLS), ordinary least squares with fixed effects
(OLS-FE), and instrumental variables (IV) [34].

Table 2 presents results using the Cobb–Douglas specification given in
Eq. (4). For eachmodel, the natural log of AFDW is the dependent variable
and included are six explanatory variables—the natural log of PAR, INI,
DAY, TEM, and PRE, and the dummy variable NANO. Time effects are con-
trolled for using dummyvariables for each year. The Cobb–Douglasmodel
relates the inputs to the output in such a way that the coefficients can
interpreted as elasticities. For example, a 1% increase in TEM will cause
a−0.242% change in production.Model 2 differs fromModel 1 by adding
location dummies. Comparing the two models, the inclusion of location
dummy variables improves measures of goodness of fit, indicating that
Model 2 is preferred. The significance of ln INI and ln TEM drops out in
the FE model, but NANO gains significance. The coefficient of ln TEM, a
measure of temperature flux may be anticipated to have a negative sign,
as it does inModel 1, but is not significant inModel 2. The adjusted R2 in-
dicates that Model 2 (OLS-FE), which includes location fixed effects, per-
forms better than Model 1. The OLS-FE model captures the systematic
differences between sites including weather, managerial skill, and physi-
cal facilities.



Table 2
Cobb–Douglas production function.a

Dep. variable:
ln AFDW

Model 1 Model 2 Model 3

OLS OLS-FE IV-FE

Dependent
variablesb

Coefficient Robust
S.E.

Coefficient Robust
S.E.

Coefficient Robust
S.E.

CON 3.841*** (0.927) 1.964 (1.458) 1.078 (1.440)
ln PAR 0.157** (0.074) 0.277*** (0.092) 0.343*** (0.094)
ln INI −1.057*** (0.331) −0.163 (0.231) 0.090 (0.306)
ln DAY 0.056 (0.069) 0.159*** (0.053) 0.361** (0.144)
ln TEM −0.242*** (0.062) 0.090 (0.099) 0.051 (0.100)
ln PRE −0.660* (0.370) −1.004*** (0.380) −1.362** (0.555)
NANO 0.029 (0.041) 0.105*** (0.037) 0.106*** (0.040)
SAP −0.293*** (0.094) −0.502* (0.217)
COR 0.326** (0.137) 0.154 (0.191)
CHM −1.295*** (0.261) −1.521*** (0.409)
NMS −0.248*** (0.064) −0.441*** (0.152)
N 495 495 495
Std. dev. of the
residuals

0.41 0.36 0.38

R2 0.35 0.51 0.47
Adj R2 0.34 0.50 0.45
AICc 538.9 406.2 449.3
Fd 54.3*** 60.3*** 45.6***
Kleib–Paap
LMe

19.86***

Kleib–Paap Ff 16.14g

Hansen J (Χ2)h 3.41
Endog (Χ2)i 0.400

a Robust standard errors are in parentheses. * significant at 10%, ** significant at 5%,***
significant at 1%.

b CON is the constant, PAR is daily-integrated photosynthetically active radiation, INI is
the initial concentration of algae at the time production is commenced, DAY is the number of
days overwhich production occurred, TEM is the average daily variation in temperature, PRE
is average daily precipitation, and NANO indicates that the species cultivated is
Nannochloropsis salina and zero otherwise.

c AIC: Goodness-of-fit measure considering the trade-offs between accuracy and com-
plexity. A lower value indicates a preferred model.

d F-test: Statistic examining the significance of the explanatory variables, as a group, in
the model. The null hypothesis is that the variable groups are not significant. The results
reject the null at the 1% level in each model.

e Kleib–Paap LM test: Under identification (test t), with the null hypothesis that
instruments are not independent, therefore, invalid. This indicated that the instruments
used are appropriate.

f Kleib–Paap F: Weak identification test of instruments.
g Indicates test stat exceeds the critical value of 5% relative bias and 15%maximal IV size

distortion [43].
h Hansen J: Over identification test, with the null that instruments are over identified

and valid.
i Endog (chi-sq): Tests exogeneity of the questioned explanatory variable, with the null

hypothesis that the variable is exogenous. The null is not rejected.

Table 3
Translog production function.a

Dep. variable: ln
AFDWb

Model 4 Model 5

OLS-FE OLS-FE

Coefficient Robust S.E. Coefficient Robust S.E.

CON 62.32** (24.119) 63.83*** (21.685)
ln PAR −11.56** (5.078) −11.95*** (4.540)
ln INI 11.49** (5.035) 21.24*** (4.730)
ln DAY 2.798** (1.221) 1.863 (1.131)
ln TEM −2.539 (2.871) −2.547 (2.546)
ln PRE 65.85* (36.603) −1.401 (34.161)
1/2 (ln PAR)2 1.175** (0.550) 1.261** (0.491)
1/2 (ln INI)2 −12.91*** (2.333) −8.863*** (2.150)
1/2 (ln DAY)2 −0.143** (0.056) −0.150*** (0.053)
1/2 (ln TEM)2 −0.679 (0.418) −0.0268 (0.377)
1/2 (ln PRE)2 8.255 (11.141) −8.697 (10.143)
ln PAR × ln INI −1.048** (0.512) −1.692*** (0.461)
ln PAR × ln DAY −0.305** (0.123) −0.247** (0.112)
ln PAR × ln TEM 0.233 (0.279) 0.0951 (0.248)
ln PAR × ln PRE −2.439 (3.125) 1.627 (2.939)
ln INI × ln DAY −1.882*** (0.237) −1.474*** (0.217)
ln INI × ln TEM 2.361*** (0.764) 0.998 (0.718)
ln INI × ln PRE −6.224 (7.550) −20.30*** (6.889)
ln DAY × ln TEMP 0.462*** (0.124) 0.563*** (0.115)
ln DAY × ln PRE −5.821*** (1.716) −4.187*** (1.542)
ln TEM × ln PRE −8.981*** (3.151) −0.257 (2.892)
NANO 0.0576 (0.051) 0.0532 (0.046)
SAP −0.463*** (0.107)
COR 0.468*** (0.149)
CHM −1.190*** (0.122)
NMS −0.343*** (0.080)
N 495 495
Std. dev. of the residuals 0.368 0.320
R2 0.49 0.61
Adj R2 0.47 0.58
AICc 448.5 330.8
F-testd

F-joint 18.9*** 25.5***
F-PAR 4.4*** 5.8***
F-INI 24.1*** 15.1***
F-DAY 16.4*** 16.9***
F-TEM 10.5*** 4.3**
F-PRE 3.8*** 3.2***

a Robust standard errors are in parentheses. * significant at 10%, ** significant at 5%,***
significant at 1%.

b CON is the constant, PAR is daily-integrated photosynthetically active radiation, INI is
the initial concentration of algae at the time production is commenced, DAY is the number of
days overwhich production occurred, TEM is the average daily variation in temperature, PRE
is average daily precipitation, and NANO indicates that the species cultivated is
Nannochloropsis salina and zero otherwise.

c AIC: Goodness-of-fit measure considering the trade-offs between accuracy and com-
plexity. A lower value indicates a preferred model.

d F-test: Statistic examining the significance of the explanatory variables, as a group, in
the model. The null hypothesis is that the variable groups are not significant. The results
strongly reject the null in each model.
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Model 3 is the same as Model 2 accept in using the estimation tech-
nique of instrumental variables to account for potential endogeneity of
DAY. In particular, managers may change inputs under their control so
as tomitigate random fluctuations in production, thus, potentially creat-
ing a feedback loop between the regressors and the error term. In the
context of the current setting, ln DAY,which is under the control ofman-
agement, could be endogenous as managers could vary the length of the
production cycle to offset other factors. To test for endogeneity, Model 3
is estimated using instrumental variable (IV) for ln DAY. This requires
choosing instrument variables that are correlated with the potential en-
dogenous variable, ln DAY, but not correlated with the error term of the
model [44]. The dataset contained additional variables that were able to
be used for the IVmodel test. Thenatural log of the number of days taken
to harvest (ln HARV), the natural log of the surface area of the tanks used
in production (ln ARE), and a dummy indicating a winter month (WIN),
were selected as instruments. It is expected that the values of these
variables may influence the number of days of a growth period. The
instruments were checked for appropriateness using the Hansen J over
identification test, Kleibergen–Paap under identification test, and the
Kleibergen–Paap weak identification tests (which are reported in
Table 2) [38]. All three of these instrument tests indicate the chosen
instruments are appropriate. The key test statistic for the appropriate-
ness of IV, Endog, does not reject OLS, indicating that IV is not necessary.
The IV model (Model 3) is not necessary, as the test statistic (Endog)
listed in Table 2, fails to reject OLS. This indicates that an instrumental
variable technique is not necessary. Thus, for the Cobb–Douglas specifi-
cation, the OLS model with Fixed Effects is the preferred estimator.

Table 3 reports estimations of Eq. (4) using a translog specification.
The translog is of the form:

qit ¼ α0 þ
XM

m¼1
αmxitm þ

XM
l¼1

XM
m¼1

αmlxitmxitl þ ηi þ υit : ð5Þ

The translog is a more flexible form than the Cobb–Douglas, and al-
lows flexibility in the relationships between the variables. Indeed, the
Cobb–Douglas is a special case of the translog, where the coefficients of
the double summation in Eq. (5) are zero. More generally, the translog
can be considered to be a second order approximation of an arbitrary



Table 4
Input elasticities of production for the Cobb–Douglas and translog fixed effects model with confidence intervals calculated using bootstrapping.a

Variable Measure Cobb–Douglasb Translogc,d

(Model 2 OLS-FE) (Model 5 OLS-FE)

All data All data CHM COR SAP NMS PEC

ln PAR Elasticity 0.404 0.404 0.187 0.228 0.476 0.669 0.815
95% L.L.e 0.402 0.402 0.178 0.230 0.468 0.661 0.799
95% U.L.f 0.409 0.409 0.187 0.230 0.481 0.680 0.845
S.E. of CIg 0.096 0.096 0.134 0.108 0.135 0.143 0.180

ln INI Elasticity −0.629 −0.629 −2.319 0.234 −0.892 −0.790 −0.157
95% L.L. −0.654 −0.654 −2.911 0.160 −0.923 −0.874 −0.449
95% U.L. −0.594 −0.594 −1.675 0.320 −0.870 −0.710 0.145
S.E. of C.I. 0.208 0.208 0.433 0.408 0.303 0.225 0.262

ln DAY Elasticity 0.090 0.090 −0.065 0.038 0.226 0.186 0.194
95% L.L. 0.089 0.089 −0.064 0.038 0.225 0.184 0.193
95% U.L. 0.090 0.090 −0.064 0.040 0.226 0.185 0.193
S.E. of C.I. 0.032 0.032 0.050 0.051 0.050 0.038 0.046

ln TEM Elasticity 0.340 0.340 0.508 0.261 0.646 0.365 −0.177
95% L.L. 0.324 0.324 0.429 0.261 0.623 0.337 −0.200
95% U.L. 0.351 0.351 0.572 0.263 0.667 0.388 −0.165
S.E. of C.I. 0.129 0.129 0.210 0.141 0.209 0.188 0.196

ln PRE Elasticity −3.399 −3.399 −7.725 −1.488 −4.994 −3.497 −0.859
95% L.L. −4.339 −4.339 −7.790 −2.810 −7.157 −5.321 −2.659
95% U.L. −2.545 −2.545 −7.783 −0.216 −2.960 −1.769 0.889
S.E. of C.I. 1.444 1.444 2.307 0.710 2.677 2.268 1.746

a The bootstrapping on regression coefficient method was used [46, p. 17].
b The formula for the input elasticity of production for the Cobb–Douglas is given byEi ¼ d ln Y

d ln Xm
¼ d y

d xi
¼ αmwhereαm is the coefficient on inputm from theCobb–Douglas specification in

Eq. (4) [44].
c The formula for the input elasticity of production for the translog is given byEi ¼ d ln Y

d ln Xm
¼ d y

d xi
¼ αm þ∑M

l¼1αmlxl whereαm is the coefficient on inputm andαml is the coefficient on the
cross interactive terms of input m form the translog specification in Eq. (5) [44].

d Elasticities are calculated at the mean value of the regressors.
e L.L.: Lower limit of the confidence interval.
f U.L.: Upper limit of the confidence interval.
g S.E. of C.I.: Standard error of the confidence interval.
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production function [45]. Again, models are analyzed with and without
the location dummy variables. Table 3 gives F-tests for the joint signifi-
cance of the coefficients on the PAR, INI, DAY, TEM, and PRE, and associat-
ed interactive terms. All variable groups were found to be jointly
significant. The NANO term was insignificant in the translog specifica-
tions. The goodness-of-fit measures suggest the model including location
dummies (i.e., Model 5 (OLS-FE)) is the preferred model.
4. Discussion

4.1. Estimation of elasticities

As previously stated elasticitiesmeasure the percentage change in one
variable that is attributable to a 1% in another variable. Elasticities are
usefulmeasures of howa variable of interest, in this case biomass produc-
tivity, is related to input variables such as sunlight and temperature or ini-
tial concentration. Input elasticitiesmeasure the sensitivity of output to an
increase in inputs. Table 4 shows input elasticities of production (calculat-
ed using the Cobb–Douglas and translog specifications) reported in
Tables 3 and 4. The elasticities are evaluated at the mean value of the in-
puts and are reported with 95% confidence intervals calculated using
bootstrapping techniques.6 For the Cobb–Douglas equation, the coeffi-
cient of the input is the elasticity, which can be taken directly from
Table 2. Calculating the elasticity for the translog specification is more
complicated as it requires giving values to the other inputs as these
terms influence the value of the translog elasticity via the interaction
terms. It was decided to use the mean values in doing calculations of
the elasticities.
6 The bootstrapping of Regression Coefficientmethodwas used [46]. The residuals from
the original regression are randomly added back to the estimated values of the dependent
variable, thereby, creating a pseudo dependent variable. The pseudo dependent variable is
then used to estimate the regression. This was repeated 1000 times. The results of the re-
gression were then used to calculate 1000 elasticity measures, which were then used to
calculate the upper and lower limits of the 95% confidence interval.
Table 4 tells a fairly consistent story with the exception of INI.
INI has a negative and significant elasticity both overall and indi-
vidually for four out of five sites. The exception is COR, which had
a positive elasticity. This indicates that INI is systematically too
high for optimal production. One particular explanation for high
overall INI is likely an incentive to avoid pests that may compro-
mise algae growth.
4.2. Simulation

The estimated elasticities presented in Table 4 are used to simu-
late the effect of a one standard deviation change from the mean
values for PAR, INI, DAY, and TEM input variables on the output var-
iable (AFDW). These are presented in Table 5. The simulation occurs
while holding all other inputs constant. The standard deviation
changes were given a positive or negative sign depending on the
sign of the elasticity measure. The aim was to demonstrate the im-
pact of input changes that would lead to positive output changes.
One of the strongest simulated changes comes from the adjustment
of starting density levels—a decrease in output of approximately
49% for the overall sample for a one standard deviation increase in
INI. Higher net output with lower initial stocking densities could be
an important economic result. It should be noted that the COR simu-
lation suggests starting density should go up to improve production
—an increase in output of approximately 17% for each standard devi-
ation increase in INI. All sites, except CHM, simulate higher produc-
tion levels with longer growing periods. The PAR simulation
provides the expected result that increases in PAR will produce
more algae. This is likely indicating that times of year with longer
days are more conducive to production. The simulation regarding
TEM indicates increases in TEM will lead to increased production.
While these are important findings from a technological perspective,
without reliable cost data it is unclear if such changes would be eco-
nomically reasonable.



Table 5
Simulating input adjustments: Percent increases in production given changes of one stan-
dard deviation in the value of explanatory variables from mean values.a

Variable Change
(+ or −)

% Δ AFDW Change
(+ or −)

% Δ AFDW Change
(+ or −)

% Δ AFDW

Total Data CHM COR

PAR + 13.4% + 4.7% + 6.6%
INI − 48.9% − 35.9% + 16.9%
DAY + 8.8% − 9.6% + 2.9%
TEM + 13.6% + 8.8% + 5.0%

SAP NMS PEC

PAR + 11.3% + 14.2% + 6.4%
INI − 36.4% − 44.9% − 4.2%
DAY + 21.3% + 7.5% + 7.9%
TEM + 8.9% + 5.3% − 1.6%

a The formula for the simulation is given by%ΔAFDW ¼ Ei � ΔX
X

� �
.
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5. Conclusions

There is considerable interest in determining the feasibility of produc-
tion of biofuels frommicroalgae, but such evaluations require assessment
of productivity. To address this issue, a pooled time series, cross sectional
data set is created using observations from five different production loca-
tions. This data set is believed by the authors to be the most extensive
collected to date on algae production. The data are used to estimate a
production function for outdoor cultivation of Nannochloropsis sp. Input
elasticities of production are estimated that allow the evaluation of pro-
duction efficiency. The results indicate that for the sample of production
analyzed, the initial concentration of algae is too high and should be ad-
justed downward. This analysis, when combined with economic cost
data, will provide more accurate insight into the economic feasibility of
algae production.

The methodology used in this study is the first step towards devel-
oping more realistic economic models and assessments of the environ-
mental impacts of algae production. It is clear from the work completed
on this unique dataset that much remains to be done in terms of
collecting reliable data on productivity and pond cultivation conditions.
Differences in data collection on the key variables of biomass productiv-
ity and basic site conditions resulted in the use of proxy variables that
introduce significant measurement error. As the elasticity measures
show, it is possible to construct direct measures of the impact of chang-
ing input conditions on productivity. If improvements are made in the
measurement of productivity and in the evaluation of which control pa-
rameters impact productivity, more accurate measures of profitability
and environmental impact will be possible.

This study illustrates how applied production analysis techniques
can provide vital information to those seeking to cultivate algae for
commercial purposes. The production function approach allows for
themeasurement on productivity (andprofitability) of changes in oper-
ating conditions. Better predictions of the impact of weather, water
depth, temperature management strategies, predator and weed control
strategies and the like can be rigorously analyzed usingproduction anal-
ysis methods. The resulting elasticities provide specific control metrics
for optimizing production and can provide a powerful toolset for reduc-
ing costs and environmental impact from large scale algae cultivation.
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